Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.

В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.

Влияние больших данных на науку и бизнес

3 сентября 2008 года в журнале Nature был выпущен специальный номер, посвященный влиянию огромных массивов информации на развитие науки. Так появился термин Big Data. С того момента прошло несколько лет, и стало ясно, что аналитика больших данных актуальна для любой отрасли.

Объемы данных возрастают экспоненциально, при этом традиционные методы и инструменты становятся неэффективными. Рост количества информации произошел благодаря развитию информационных технологий и расширению возможностей вычислительной техники. Помимо интернета (социальные сети, сайты, интернет-магазины, форумы, СМИ), данные поступают с мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем, их источники постоянно растут. Каждый день объем данных продолжает увеличиваться.

Для хранения, обработки и анализа такого огромного объема информации требуются специальные алгоритмы и программные средства. Они также входят в понятие Big Data. Данная технология нашла применение во многих сферах, включая медицину, банковское дело, страхование, маркетинг, рекламу и другие. Так, большие данные используются для создания персонализированных рекомендаций, предотвращения кибератак и мошенничества, определения тенденций в медицине и других отраслях.

Анализ методов хранения данных

Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.

При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.

Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.

Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.

Переработка информации перед анализом

Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.

Data Mining: извлечение полезной информации из разнородного массива

Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.

В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.

Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.

Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.

Анализ прогнозов

Прогнозирование различных событий может быть выполнено путём применения данного метода. Этот метод широко используется для предсказания поведения клиентов, возрастающего объёма продаж, финансовой стабильности компаний, изменений курса валют, определения сроков доставки товаров, а также для выявления неисправностей в работе оборудования. Обычно метод основан на изучении прошлых данных и определении параметров, которые могут повлиять на будущее.

Статистический анализ

Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.

Визуализация данных является неотъемлемой частью их анализа. Она позволяет превратить информацию в понятный и удобный для использования формат, включая графики, диаграммы, карты и гистограммы. Обычно этот этап анализа выполняется в конечной стадии, когда необходимо проиллюстрировать результаты для пользователей.

Для эффективной визуализации используются специальные инструменты Big Data, предназначенные для работы с каждым конкретным методом.

Рост объема информации, с которым мы сталкиваемся каждую секунду, стремительно ускоряется. Так, только за 2020 год пользователи сгенерировали более 60 зеттабайт (60 × 10 21 байт) данных. При этом, по прогнозам, к 2025 году подобный объем информации вырастет втрое. В связи с этим, анализ Big Data является одним из перспективных технологических направлений. Большие данные актуальны для бизнеса, науки и сферы государственного управления. Поэтому крупные компании активно инвестируют в эту область.

Какими характеристиками обладает Big Data?

Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:

1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.

2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.

3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.

С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).

Зачем использовать Big Data?

Одним из главных преимуществ использования анализа больших данных является возможность оптимизации бизнес-процессов, улучшения логистики, повышения производительности и качества товаров и услуг. Также большие данные позволяют минимизировать риски, совершенствовать предсказание тенденций рынка, понимать поведение клиентов и их потребности, чтобы правильно нацеливаться на целевую аудиторию. Благодаря анализу большого объема данных, производство становится экологичнее и энергоэффективнее. Не только продавцы получают выгоду от использования Big Data, но и покупатели - удобства в использовании сервисов.

Первыми преимущества использования Big Data оценили телекоммуникационные компании, банки и компании ретейла. Сейчас анализ больших данных широко используется не только в торговле, рекламе и индустрии развлечений, но и в сфере безопасности, медицине, сельском хозяйстве, промышленности, энергетике, науке, государственном управлении.

Ниже представлены несколько примеров использования Big Data в разных отраслях деятельности.

Революция в фармакологии: как Big Data помогает создавать лекарства

С использованием Big Data технологические компании могут создавать интеллектуальные продукты и сервисы, способные решать принципиально новые задачи. В США, например, была разработана платформа "вычислительной биологии", которая может помочь находить и создавать лекарственные препараты, способные точно попадать в цель и быть эффективными в лечении конкретных заболеваний.

Анализ больших данных уже используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP были обнародованы данные о том, что использование Big Data в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.

Анализ больших данных применяется и в Европе, где он внедряется в сферу медицины более активно. Исследования, проведенные в этой области, показали, что с помощью анализа информации на 150 000 пациентов можно выявлять связь определенных генетических факторов с заболеваемостью раком, что помогает более эффективно диагностировать и лечить заболевания.

Таким образом, внедрение инноваций в сферу медицины с помощью анализа больших данных позволяет создавать более эффективные лекарства и повышать точность медицинских исследований, что может привести к существенному улучшению качества жизни людей.

Активное использование больших данных в маркетинге позволяет анализировать поведение клиентов, используя историю их покупок, поисковых запросов, посещений и лайков в социальных сетях. Такой подход позволяет маркетологам определить предпочтения пользователей и на основе этого предлагать им товары и услуги, которые имеют для них наибольшую ценность. С помощью Big Data можно создавать более адресную и эффективную рекламу.

Amazon был первым сервисом, который запустил систему рекомендаций, основанную на анализе пользовательских запросов. В процессе работы системы учитывались не только история покупок и поведение клиентов, но и разнообразные внешние факторы, такие как сезон или предстоящие праздники. Как результат, система рекомендаций стала отвечать за более чем треть всех продаж на платформе Amazon.

Обеспечение безопасности транзакций является одним из важнейших приоритетов для банков. Сегодня они используют большие данные, чтобы улучшить методы выявления мошеннических операций и предотвратить кражу персональных данных клиентов.

Одним из инструментов, используемых банками, является анализ Big Data и машинное обучение для создания моделей поведения честных пользователей. Любое отклонение от этого поведения сигнализирует службе безопасности о возможной угрозе.

"Сбербанк" был одним из первых банков, который начал использовать подобную систему еще в 2014 году. Они внедрили систему сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы данных. Благодаря этой системе была достигнута большая точность идентификации клиентов, а количество случаев мошенничества снизилось в десять раз.

Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.

Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.

Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.

Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.

Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.

Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.

Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *