Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.

С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.

В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.

Молекулярно-генетическая диагностика – это новый метод обследования организма, который позволяет точно и быстро обнаруживать вирусы, инфекции, мутации генов, вызывающие патологию, а также делать оценку рисков наследственных и других заболеваний. В то же время это лишь небольшая часть возможностей исследования ДНК.

Наиболее значимым достоинством молекулярно-генетической диагностики является минимальное вмешательство, поскольку исследования проводятся in vitro. Данный метод успешно применяют для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов. Кровь из вены является наиболее распространенным материалом для исследования, однако возможно выделение ДНК/РНК из других жидкостей и тканей, как, например, слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос и ногтей.

Молекулярная диагностика – это значительный шаг к персонализированной медицине, поскольку она дает возможность учитывать все особенности конкретного пациента при диагностике и терапии.

Методы молекулярной диагностики широко используются в различных областях медицины. Рассмотрим основные задачи и сферы, где применяется данная технология.

  1. Выявление различных патологий. Для диагностики инфекционных и вирусных заболеваний, которые не удается определить традиционными методами, молекулярная диагностика является незаменимой. Благодаря ей можно обнаружить болезнь на ранних стадиях, когда еще нет внешних клинических проявлений.
  2. Исследование аллергических реакций. Молекулярная диагностика позволяет точнее определить аллерген, не требует прямого контакта с аллергеном и при этом является безопасной для пациента.
  3. Индивидуальная оценка рисков наследственных заболеваний. Молекулярная диагностика помогает выявить наличие генетических мутаций и определить риск передачи наследственной патологии. Знание об этом позволяет проводить профилактику болезней на основе изменения образа жизни.
  4. Перинатальная медицина. Методы молекулярной диагностики незаменимы для определения состояния здоровья эмбрионов, включая выявление синдромов Дауна, Эдвардса, Патау и других. Также они используются в области вспомогательных репродуктивных технологий.
  5. Фармакогенетика. Молекулярная диагностика позволяет определить, какие лекарства максимально эффективны у конкретного пациента, что особенно важно при лечении тяжелых заболеваний, включая онкологические.
  6. Спортивная медицина. Молекулярная диагностика также находит применение для определения спортивных перспектив, в том числе для узнавания, какой вид занятий принесет наибольшую пользу для здоровья или поможет достичь спортивных результатов.

Медики всерьез рассматривают перспективу персонализированной терапии, позволяющей подбирать препараты исходя из генетических особенностей каждого пациента. Молекулярная диагностика - это один из ключевых элементов такого подхода, который может значительно уменьшить риски побочных эффектов и увеличить эффективность лечения.

Генетические исследования становятся все более популярными, когда пациент желает получить информацию о своем здоровье. Обычно это необходимо в следующих ситуациях:

  1. Для установления точного диагноза. Например, неправильная идентификация аллергена или недооценка вирусного заболевания. Это имеет прямое влияние на эффективность лечения;
  2. Для профилактики возможных нарушений. Если пациент знает, что у него повышенный риск сердечно-сосудистых заболеваний или рака, он может принимать соответствующие меры, такие как отказ от вредных привычек;
  3. Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов лечения. Использование метода проб и ошибок приводит к потере времени и жизненных сил, а также, в ряде случаев, к летальному исходу.

Одной из важных категорий генетических исследований является изучение ДНК в связи с планированием или рождением ребенка. Родители часто обращаются в лаборатории для:

  1. Изучения своей генетической совместимости, оценки рисков наследственных заболеваний у потомка;
  2. Исследования состояния плода и выявления синдромов и опасных заболеваний;
  3. Диагностики заболеваний и аллергических реакций у младенца;
  4. Определения наиболее подходящих видов спорта, питания и образа жизни ребенка, а также того, что следует избегать;
  5. Установления отцовства или материнства.

Статья "Этапы молекулярно-генетических исследований"

Если вы намерены провести молекулярно-генетическое исследование, то необходимо знать, что любой его метод включает в себя ряд этапов:

  1. Взятие биоматериала. Это может быть кровь пациента или другой материал. После того, как биоматериал получен, он маркируется и транспортируется в лабораторию.
  2. Выделение ДНК/РНК. Для проведения анализов требуется чистая ДНК или РНК. Существует несколько методов извлечения, которые позволяют получить эту материю надежно и без потерь.
  3. Проведение исследований по выбранному методу. После подготовки образцов с помощью ДНК или РНК происходит проведение молекулярно-генетических исследований. Конкретный метод изучения зависит от цели исследования.
  4. Изучение и интерпретация результатов. Полученные результаты нужно обработать и проанализировать. Для этого подойдет программное обеспечение для анализа данных. Номер индивидуального протокола лучше сохранять, чтобы в дальнейшем иметь возможность его прочитать.
  5. Выдача заключения. На последнем этапе исследования вы получите заключение, которое будет содержать описание метода, используемых реактивов, конечных результатов и других особенностей этого исследования.

Таким образом, любое молекулярно-генетическое исследование должно пройти эти этапы, чтобы быть завершенным.

Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.

Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.

Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.

Молекулярная цитогенетика является эффективным методом выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Суть метода заключается в исследовании хромосом при помощи специальных микроматриц, которые наносят на ДНК-чипы. Один из основных этапов анализа - извлечение лимфоцитов из образца крови, которые затем помещают в питательную среду на 48-72 часа. После прохождения указанного времени производится их изучение. Этот метод назначается в основном для изучения причин бесплодия и невынашивания беременности. А также для установления диагноза у детей при подозрении на врожденные заболевания. Молекулярная цитогенетика очень точна, однако, поскольку результат можно получить только через 20-30 дней после проведения анализа, ее можно назвать трудоемкой и длительной процедурой.

Метод имеет как свои преимущества, так и недостатки. Одно из основных достоинств состоит в его специфичности, поскольку при помощи молекулярной цитогенетики можно выявить лишь небольшое количество патологий, включая аутизм. Однако, при этом метод достаточно точен и во многих случаях не допускает ошибок.

Метод полимеразной цепной реакции (ПЦР) – это фундаментальный и, до сегодняшнего дня, наиболее распространенный метод в молекулярной диагностике. Изобретенный в 1983 году, этот метод отличается высокой точностью, чувствительностью и скоростью проведения исследования. Его использование позволяет выявлять ряд патологий, среди которых такие, как ВИЧ, различные вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.

Подход для проведения диагностики на базе ПЦР предполагает выбор участка ДНК и многократное его дублирование с помощью специальных реагентов лаборатории. Для проведения диагностики исследуются различные биоматериалы, среди которых кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и др.

Популярный молекулярный метод исследования под названием флуоресцентная гибридизация (FISH) обеспечивает возможность исследования нуклеотидных соединений в определенных участках хромосомы. Для этого используются специально меченные флуоресцентными маркерами короткие ДНК-последовательности, так называемые зонды. Такой подход в исследовании атипичных генов стал популярным не только в онкологии для обнаружения остаточных злокачественных клеток после проведения химиотерапии, но и в пренатальной диагностике для выявления вероятности возможности развития у плода врожденных пороков, а также в гематологии.

Возможность проведения анализа пообещала все большую чувствительность и точность в выявлении поврежденных фрагментов ДНК с погрешностью около 0,5%. Кроме того, важно учесть, что результат тестирования можно получить достаточно быстро — в течение не более 72-х часов. Тем не менее, следует отметить, что данная методика имеет несколько недостатков в том числе - FISH очень специфичен и может служить лишь для подтверждения или опровержения предполагаемого диагноза.

Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.

Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.

Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.

Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *