Устройства плавного пуска электродвигателя: функции, виды и стоимость решений
Недостатки электродвигателя, такие как высокий пусковой ток и большая нагрузка на механические узлы приводимого в действие оборудования, часто возникают при запуске. Решением этих проблем является применение устройств плавного пуска (УПП). В данной статье мы расскажем о том, как выбрать УПП и какие задачи оно может решить.
В современном мире скорости, производительности и эффективности, электродвигатели имеют множество различных типов — от внутреннего сгорания до ядерных и пневматических. Но, выбор промышленности пал на асинхронные двигатели переменного тока, благодаря их простоте в конструкции, стабильности работы, высокой эффективности и бесшумности. Однако, традиционные асинхронные двигатели имеют недостатки в момент запуска. Высокий пусковый ток создает сильную нагрузку на питающую сеть, что может привести к снижению качества энергии и возникновению проблем в работе оборудования, подключенного к сети. Кроме того, резкий рывок при запуске сокращает срок службы механических узлов приводимого в действие оборудования.
Решением проблем являются устройства плавного пуска, которые позволяют избежать высокого пускового тока и снижения нагрузки на механические узлы оборудования. Устройства плавного пуска подходят для всех видов электродвигателей асинхронного типа. Выбор конкретного устройства плавного пуска зависит от ряда факторов, включая мощность и тип двигателя, требования к производительности и экологической безопасности. Устройства плавного пуска могут сократить расходы на энергию и увеличить срок службы механических узлов оборудования, что делает их необходимыми для бесперебойной работы промышленности.
УПП: возможности и функции
Устройство плавного пуска (УПП) является эффективным способом решения проблемы скачкообразной подачи напряжения питания на двигатель. Обычно напряжение подается на двигатель с нулевого до номинального значения, это вызывает увеличение тока до шести, восьми или даже до 10-12 кратного увеличения номинального тока потребления. Это значительно усложняет запуск двигателя и может привести к повреждению оборудования и дополнительным финансовым затратам.
УПП позволяет решить проблему скачкообразной подачи напряжения, используя плавную подачу напряжения и разгон двигателя до номинальных режимов. Это позволяет избежать высоких пусковых токов, снизить вероятность перегрева электродвигателей, повысить их срок службы, а также устранить рывки в механической части электропривода при запуске и гидравлические удары в трубопроводах.
Применение УПП имеет ряд преимуществ, однако на практике не всегда мощности источника питания достаточно для обеспечения высокого тока. В этом случае нужно принимать дополнительные меры для сохранения стабильности питания.
Таким образом, УПП - это важное устройство, которое позволяет эффективно решить проблему скачкообразной подачи напряжения на электродвигатель и избежать поломок оборудования.
Принцип работы устройства плавного пуска асинхронного электродвигателя основан на подаче управляющего напряжения на тиристоры, которые проводят ток после подачи напряжения и закрываются при прохождении значения тока через ноль. Таким образом, тиристоры, являющиеся основным конструктивным элементом устройства, соединяются по симисторной схеме для каждой фазы трехфазной системы.
В нужные моменты времени управляющее напряжение подается на управляющие электроды всех тиристоров, благодаря чему напряжение на силовых клеммах электродвигателя можно регулировать. При этом, поскольку крутящий момент электродвигателя является функцией квадрата приложенного напряжения, возникает возможность регулировать механические нагрузки в электроприводе. Также возможно плавное остановление электродвигателей, приводящих в действие низкоинерционные нагрузки.
Однако, такие устройства могут справляться только с невысокими нагрузками или запуском двигателя вхолостую. При увеличении времени запуска возникает опасность перегрева двигателя и полупроводниковых элементов устройства, которые также могут выйти из строя. Кроме того, снижение напряжения приводит к снижению крутящего момента на валу.
Более новейшие устройства плавного пуска отличаются отсутствием указанных недостатков и делятся на амплитудные и частотные. Хотя последние дороже и сложнее в установке и наладке, их использование оправдывает себя при эксплуатации в условиях, когда для решения задач необходимо изменять скорость вращения электродвигателя.
Варианты УПП
Существует два основных типа устройств плавного пуска:
- Регуляторы напряжения без функции обратной связи
- Регуляторы напряжения с функцией обратной связи
Регуляторы напряжения без обратной связи
Это наиболее распространенный тип устройств плавного пуска. Регулировка напряжения может осуществляться по двум или трем фазам, однако это происходит по заданным пользователем параметрам. Эти параметры включают время и начальное напряжение запуска. Благодаря этому устройства могут уменьшить пусковой ток и момент, а также обеспечить плавную остановку. Тем не менее, момент не регулируется в зависимости от нагрузки на двигатель.
Регуляторы напряжения с обратной связью
Они являются усовершенствованной версией предыдущей группы. Они контролируют фазовый сдвиг между напряжением и током в обмотках статора и используют полученные данные для регулировки напряжения на клеммах двигателя. Это гарантирует запуск наименьшим значением пускового тока и достаточным значением механического крутящего момента. Кроме того, полученные данные используются для защиты от перегрузки, дисбаланса фаз и других параметров.
Прогрессивные УПП
Прогрессивные УПП имеют следящие цепи, которые контролируют нагрузку в каждый конкретный момент времени. Эти устройства подходят для приводов, характеризующихся тяжелыми и очень тяжелыми пусковыми режимами, для которых обычно используют преобразователи частоты. Более того, данные устройства позволяют снизить энергопотребление.
Применение устройств плавного пуска
Везде, где используется электродвигатель, можно применять устройства плавного пуска (УПП). Однако выбор нужно производить, исходя из нагрузки двигателя и частоты запусков.
Если нагрузка на двигатель невелика, а его запуск производится редко, можно использовать регуляторы без обратной связи либо вообще регуляторы пускового момента. Такие способы подхва-тят, например, в шлифовальных станках, некоторых вентиляторах, роторных дробилках, вакуумных насосах.
Если высокая нагрузка сочетается с частым и инерционным запуском, целесообразнее будет использовать регуляторы напряжения с обратной связью. Это может быть целесообразным, например, при работе с ленточной пилой, центрифугой, сепаратором, распылителем, лебедкой, вертикальным конвейером. Также можно выбрать запас по номиналу.
Интересный факт: в Европе законодательно запрещено запускать электродвигатели мощностью 15 кВт и выше, если они не оснащены устройствами плавного пуска.
Цены на софтстартеры и их нестабильность в последние годы являются неотъемлемыми компонентами рынка. По словам экспертов, подобное явление вызвано высокой стоимостью импортных товаров, в том числе и продукции многих отечественных компаний, производящихся за рубежом или изоляционных материалов, выпускаемых в России на основе импортных комплектующих. Из-за нестабильности валют наблюдаются колебания цен на софтстартеры.
Уровень стоимости софтстартеров напрямую зависит от их характеристик. Некоторые модели, начиная от 7 тысяч рублей, могут иметь заданный номинальный ток. Но более мощные модели, стоимость которых может достигать 700 тысяч рублей, позволяют равномерно распределить ток до 1200 А.
Фото: freepik.com